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a b s t r a c t

Mercury emission from coal combustion has become a global environmental problem. In order to accu-
rately reveal the complexly nonlinear relationships between mercury emissions characteristics in flue gas
and coal properties as well as operating conditions, an alternative model using support vector machine
(SVM) based on dynamically optimized search technique with cross-validation, is proposed to simu-
late the mercury speciation (elemental, oxidized and particulate) and concentration in flue gases from
coal combustion, then the configured SVM model is trained and tested by simulation results. According
to predicted accuracy of indicating generalization capability, the model performance is compared and
evaluated with the conventional multiple nonlinear regression (MNR) models and the artificial neural
lue gases

upport vector machine
odeling
ptimized search
ross-validation

network (ANN) models. As a result, it is found that, the SVM provides better prediction performances with
the mean squared error of 0.0095 and the correlation coefficient of 0.9164 for testing sample. Moreover,
based on the SVM model, the correlativity between coal properties as well as operating condition and
mercury chemical form is also analyzed in order to deeply understand mercury emissions characteris-
tics. The result demonstrates that SVM can offer an alternative and powerful approach to model mercury

stion
speciation in coal combu

. Introduction

Due to the characteristics of volatility, persistence, bioaccumu-
ation and toxicity in the ambient air, mercury pollution can directly
ive rise to enormous hazards on neurological health [1–9]. In 2005,
S EPA issued the Clean Air Mercury Rule (CAMR) [10,11] to per-
anently cap and reduce mercury emissions from coal-fired power

lant for the first time ever. At present, mercury emissions from flue
as by coal combustion have been a global environmental problem.
herefore, it is important to obtain mercury speciation and con-
entration from combustion flue gases for effective evaluation of
ercury emissions and control measurements.
In order to determine mercury speciation in combustion flue

ases, it is necessary to develop mathematical models to describe
he complicated relationship between mercury emissions and
peration conditions of combustion technology. Conventional
athematical models, such as theoretical or semi-empirical models
nd nonlinear regression method based on statistical analysis, are
ifficult to directly use for accurate prediction of the mercury emis-
ion characteristics in different combustion conditions. Since these
odels ideally require a very detailed understanding of the mech-

∗ Corresponding author. Tel.: +86 21 55272740; fax: +86 21 55273704.
E-mail address: zhaobingtao@usst.edu.cn (B. Zhao).

304-3894/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.jhazmat.2009.09.042
flue gases.
© 2009 Elsevier B.V. All rights reserved.

anisms of mercury transformation, or a very proper correlation for
fitting experimental dataset.

In the last two decades, artificial neural network (ANN), as a
typical artificial intelligence (AI) model, has been widely applied
in the fields of modeling, prediction, fault detection and process
control [12]. In the field of mercury pollution control, some ANNs
have successfully been applied to predict the mercury speciation
in flue gases. Jensen et al. [13] employed a multilayer perceptron
(MLP) to estimate the mercury speciation in combustion flue gases.
They used the data from 76 power plants to train and develop MLP-
ANN. The results showed the estimation of the mercury emissions
from selected utility boilers highly agreed with the observed values.
Afterward, Adbel-Aal [14] used the GMDH-based abductive ANN
for modeling of mercury speciation in flue gases. It was found that
a good prediction performance was achieved with the correlation
coefficients as high as 0.97 for training data.

With the interdisciplinary development of modern computa-
tional technologies and statistical learning theory, support vector
machines (SVMs), as new artificial intelligence (AI) model which
differs from ANN, has become a more attractive approach for mod-

eling highly complicated and nonlinear system. SVM is a supervised
learning theory from the field of machine learning and is applicable
for both nonlinear classification called SVMC or SVC and regression
called SVMR or SVR. Rooted in the statistical learning theory devel-
oped by Vapnik [15] at AT&T, SVM quickly gained attention from

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:zhaobingtao@usst.edu.cn
dx.doi.org/10.1016/j.jhazmat.2009.09.042


dous Materials 174 (2010) 244–250 245

m
t
t
h
p
e
t
u
o

o
c
p
u
m
t
c
t

2

b
b
o
t
[
o
e

[
t
([

t

˝

A
a

y

w
C
b
a
a
E
p

K

T
S

B. Zhao et al. / Journal of Hazar

any research areas due to a number of theoretical and compu-
ational merits, and even marked the beginning of a new era in
he learning from examples paradigm [16]. In recent years, SVM
as been successfully applied to many fields of pattern recognition,
hase diagram assessment, molecular and materials design, trace
lement analysis, cancer diagnose and chemical engineering and
echnology, etc. [17]. In the field of mercury emission prediction,
nfortunately, SVM so far does not receive a great deal of attention
n its algorithmic advantages.

The aim of this work is to obtain a more accurate model based
n SVM which is applied to provide a means of predicting mer-
ury speciation emission in combustion flue gases. The estimation
erformance of this model is comprehensively compared and eval-
ated with the conventional multiple nonlinear regression (MNR)
odel as well as different ANN models in the whole study. Further,

he effect of coal composition and combustion condition on mer-
ury speciation is also involved based on the prediction results by
he present model.

. Theory

Support vector machines (SVMs) are universal approximator
ased on statistical and optimizing theory. Originally, SVMs have
een developed for classification tasks [18]. With the introduction
f Vapnik’s �-insensitive loss function, SVMs have been extended
o solve nonlinear regression and time series prediction problems
19–24]. Until now, SVMs have been regarded as powerful method-
logies for solving problems in nonlinear classification, density
stimation and function estimation.

As reformation to standard SVM, least-square SVM (LS-SVM)
25,26] can be trained much more efficiently after constructing
he Lagrangian function by solving the linear Karush–Kuhn–Tucker
KKT) system:

0 �1T

�1 ˝ + �−1I

][
b
˛

]
=

[
0
y

]
(1)

According to Mercer’s theory [27,28], the relationship between
he mapping function and the kernel function was expressed as

kl = �(xk)T �(xl) = K(xk, xl), k, l = 1, . . . , N (2)

fter arrangement, the LS-SVM regression model can be obtained
s

ˆ(x) =
n∑

k=1

˛kK(x, xk) + b (3)

here ŷ is the estimated output variables, K is the kernel function.
ommonly, several functions including linear, polynomial, radial
asis function (RBF) and multilayer perceptron (MLP) can be used
s the kernel function in SVM. Based on the comparison on the
vailability and adaptability, the RBF function (Gaussian function),

q. (4), is finally selected as the kernel function due to its good
erformance under general smoothness assumptions.

(x, xk) = exp

(
−||x − xk||2

�2

)
(4)

able 1
ummary of input and output variables for models of the present work.

Input variables Variable specification

x1 Coal heat, Btu/lb, dry
x2 Coal Hg, lb/1012 Btu
x3 Coal Cl, mass, ppm, dry
x4 Coal S, mass%, dry
x5 Ash, %, dry
x6 Flue gas temperature, ◦F
Fig. 1. Schematic procedure of SVM training and testing.

3. Method

Usually, the SVM modeling procedure can be divided into
following steps: selecting variable, dividing sample, optimizing
parameters, training and testing simulation and evaluating perfor-
mance. To more distinctly explain the whole modeling process by
SVM theory, the general flow chart of SVM procedure in the present
work is illustrated in Fig. 1. All process is carried out on a com-
puter with the hardware configurations: processor, AMD Athlon
(TM) 64 × 2 Dual Core Processor 4400+ (2.31 GHz); memory 2.00 GB
(DDR2-667 1G × 2); hard drive, 120 GB (5400 rpm).

3.1. Variable and sample

In coal combustion processes, many factors are responsible for
the formation and concentration of mercury. These factors usu-
ally include the coal characteristics, operating conditions even the
pollutants control technologies. According to the availability of col-
lected data and known mercury correlations, main six associated
variables as the input and three chemical forms of mercury as the

output are selected as proposed by Jensen et al. [13]. These vari-
ables, as shown in Table 1, basically cover the factors which affect
the mercury generation and transformation in combustion process,
and also used in the SVM model of the present work.

Output variables Variable specification

ŷ1 Elemental Hg
ŷ2 Oxidize Hg
ŷ3 Particulate Hg
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The 82 samples dataset obtained from the measurements of
oal-fired power plant in the USA as part of the Information Col-
ection Request (ICR) scheme in 1998 [29], is used in the present
nvestigation to evaluate the prediction performance of the SVM

odel. To enhance the reliability of the SVM model, the normal-
zation method and the simple random sampling technique are
pplied, respectively for the data processing in this work. Due to the
arge difference in the order of magnitude of the value, the available
ataset is transformed or scaled into 0–1 interval using normaliza-
ion preprocessing method in order to avoid solution divergence,
s in Eq. (5). Where xNi, xi, xmin and xmax are the scaled value of the
bserved variable, actual value of the observed variable, minimum
bservation value of the dataset and the maximum observation
alue of the dataset, respectively.

Ni = xi − xmin

xmax − xmin
(5)

Correspondingly, the final simulation results are also postpro-
essed by denormalization method in terms of Eq. (5). In addition, to
btain more accurate evaluation of the generalization and robust-
ess performance for the SVM model in the present work, all
ataset samples are divided into two non-repetitive groups as the
raining sample and the testing sample using the simple random
ampling (SRS) technique, with the size ratio of 80%:20%.

.2. Parameters optimization

It is well know that, in SVM model, the key parameters, both the
egularization parameter � and kernel parameter (square of spread
actor) �2, play a crucial role in establishing a good SVM regression

odel with high prediction accuracy and stability. Usually, these
arameters are assigned as constants using the semi-empirical cor-
elations. However, it is difficult to decide whether the assigned
onstant is the optimal value for the SVM model. Therefore, these
arameters need to be correctly determined based on the evalua-
ion parameters in order to optimize the prediction performance.
or this purpose, a multi-step search (MSS) technique is used
n the present work to dynamically seek the optimal values for
hese key parameters. This technique actually has two steps: first
coarse search and identify a better region in search field accord-

ng to contour lines of error, then perform a fine search over that
egion. In process of parameters optimization, the cross-validation
s employed to avoid over-fitting. In the present work, The SVM

odel employs 2D multi-step grid search with 10-fold cross-
alidation to seek the optimal hyper-parameters, the regularization
arameter � and the kernel parameter �2. Specifically, the initial
alues for � and �2 are set as 10 and 0.1, then the optimal search is
erformed in the interval of (1, 100) and (0.01, 10), respectively. In
his stage, the effect of regularization and kernel parameters on 10-
old cross-validation error is correspondingly described in Fig. 2. As
he figure shows, the symbol in the form of “·” represents the results
y the first step search. The second step search is performed at min-

mal cross-validation error by the first step search and is marked
ith the from of “×”. Finally, the optimized parameters (� , �2) are

btained at minimal cross-validation error in the second search.
oreover, although there are different cross-validation curved

urface for each mercury form, the increase of �2 gives rise to sig-
ificant decrease of the cross-validation error while the change of
appears to be insensitive to the cross-validation error for all three
ercury forms, indicating that �2 has predominantly influence

ompared with � in the prediction of the mercury speciation.
.3. Training and testing simulation

Once the optimal values for key parameters are obtained using
ptimized search technique, the optimized SVM model (the SVM
Fig. 2. Effect of algorithm parameters of SVM on cross-validation MSE for: (a) ele-
mental Hg; (b) oxidized Hg; (c) particulate Hg.

configured with optimized parameters) is trained based on the
training data selected at random until it meet the convergence con-
ditions. Subsequently, the trained models are performed to predict
the simulated results according to input of the testing data and
then compared with the output of testing data. Finally, the model
validities are criticized according to the evaluation parameters.

3.4. Evaluation parameters

In order to comprehensively compare the model performance,
the evaluation parameters, normalized mean squared error (MSE)
E2 and correlation coefficient (CC) R are employed as follows:

E2 = 1
n

n∑
i=1

(yNi − ŷNi)
2 (6)

R =
∑n

i=1(yNi − ȳN)(ŷNi − ¯̂yN)√ (7)
∑n
i=1(yNi − ȳN)2∑n

i=1(ŷNi − ¯̂yN)
2

Besides, the simulation time (CPU time) t is also considered to eval-
uate the computational efficiency.
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ig. 3. SVM simulation for mercury speciation with optimal parameter (� ,
2) = (244.19, 7.41): (a) for training sample and (b) for testing sample.

. Results and discussion

.1. Comparison of SVM model with experimental results

The experimental data vs. the configured SVM predictions for
ercury speciation are shown in Fig. 3. The solid data points in

ig. 3(a) illustrate the simulation results of mercury speciation by
he SVM model for the training samples. According to this figure,
t can be seen that all SVM model is able to attain the high training
ccuracy with the training MSE of 0.0014 and correlation coefficient
f 0.9897. To exam the capability of generalization and robust-
ess for SVM model which is emphatically concerned in practical
pplications, the open data points in Fig. 3(b) describe the sim-
lation results of mercury speciation by the SVM for the testing
amples. It is found that the SVM still provides good agreement
ith the experimental value, with the testing MSE of 0.0095 and

orrelation coefficient of 0.9164 for the testing stage. It is indicated
hat, compared with traditional models, the SVM model based on
he principle of structural risk minimization and the universal sta-
istical and optimized algorithm has a superior nonlinear fitting
apability.
.2. Comparison of SVM model with MNR model and ANN models

Fig. 4 describes the result calculated by the conventional mul-
iple nonlinear regression (MNR) model which is established using
Fig. 4. MNR simulation for mercury speciation.

the general nonlinear relation with the following appearance:

ŷ = ˛0(x˛1
1 )(x˛2

2 )· · ·(x˛n
n ) (8)

where ˛0 to ˛n are the equation parameters for the nonlinear
relation. Due to complicity of nonlinear relation, Eq. (8) is trans-
formed into the multiple linear regression (MLR) equation to solve
the equation parameters. According to the comparison between
Figs. 3(b) and 4, it is observed that the MNR model is not satisfac-
tory to give the prediction for all different mercury form, indicating
that it is still difficult to accurately model mercury emission behav-
ior through the conventional nonlinear approach because of high
complex relationship between coal properties and operating con-
ditions.

In order to evaluate the predicted performance of mercury
emissions in combustion flue gases by SVM and artificial neural
network (ANN) which belongs to the artificial intelligence model,
Fig. 5 describes the generalization performance of the most popular
feed-forward neural networks, including back propagation neural
network (BPNN), radial basic functions neural network (RBFNN)
and generalized regression neural network (GRNN). In this work,
all ANNs employ the three layers architecture with a single hidden
layer which is able to theoretically approximate a function with the
arbitrary accuracy. In these networks, the key parameter, neurons
number of hidden layer NH for BPNN and spread factor also called
smoothing parameter � in the Guassian kernel function for both
RBFNN and GRNN, are also determined by the multi-step dynamical
search with 10-fold cross-validation. According to the comparison
of Figs. 3(b) and 5, the simulation results for testing sample show
that the optimized BPNN, RBFNN and GRNN yield the larger pre-
diction error than that of the SVM, although they have the small
prediction error for training sample.

In general statistics, the mean squared error (MSE) of an estima-
tor, as a loss function, is one of many ways to quantify the amount
by which an estimator differs from the true value of the quan-
tity being estimated. Another parameter, the correlation coefficient
(CC) refers to the departure of two random variables from indepen-
dence. Results with smaller MSW (close to 0) and larger CC (close to
±1) indicate that the model can provide the better predicted value
to approximate the actual value. According to Figs. 3–5, the testing
MSE for mercury prediction by SVM, MNR, BPNN, RBFNN and GRNN

is given as 0.0095, 0.1180, 0.0962, 0.0324 and 0.0303, with the cor-
relation coefficient of 0.9164, 0.3310, 0.5278, 0.7107 and 0.7407,
respectively. It is indicated that the SVM model presents the best
predicted accuracy while the conventional MNR model presents the
worst in this case. Moreover, the diagonal isoline in Figs. 3–5 can be
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ig. 5. ANN simulation for mercury speciation: (a) BPNN with the optimal parameter
H = 9, (b) RBFNN with the optimal parameter � = 0.07 and (c) GRNN with the optimal
arameter � = 0.34.

sed to intuitively judge the distribution of predicted accuracy. As a
hole, the SVM model shows a high predicted accuracy, reliability

nd uniformity for three kinds of mercury in all concentration level.

n comparison, the MNR model only has the reasonable prediction
n the low concentration, 0–1 lb/1012 Btu of coal, but has the under-
stimate in the high concentration. In the ANN, the BPNN shows
he poor robustness in the range of more than 1 lb/1012 Btu of coal,
aterials 174 (2010) 244–250

especially for elemental mercury and oxidized mercury. The RBFNN
and GRNN display the overestimate for particulate mercury and
elemental mercury, respectively. In terms of the distribution of pre-
dicted results, they are better than MNR model and BPNN model but
worse than SVM model. These differences may be attributable to
their respective differences in the nature of the model algorithms.

The conventional MNR, as one of most commonly used statis-
tical theory, has the certain advantage in quantitatively analyzing
the effects of each input variable on output variable. But compared
with the AI models, the MNR must assume the variable distribu-
tion, regression function and performed the error check. These will
limit its prediction accuracy, even though it has the shortest CPU
time (at 0.02 s) in all models in this case. By using the multi-step
dynamical search technique with 10-fold cross-validation, the ANN
models configuration are able to be effectively improved by over-
coming local minima, optimizing spread parameter, etc. However,
the BPNN does not display a good generalization performance due
to the sensitivity to the initial weight and net structure. In addi-
tion, the BPNN has a longest simulation period in terms of the
CPU time (at 676.78 s) due to the cycle process of back propaga-
tion. Comparatively, by not requiring an iterative procedure the
RBFNN and GRNN perform the fast learning speed with the CPU
time of 102.21 and 9.36 s, respectively. Nevertheless, the randomic-
ity selecting centre of hidden layer neurons for RBFNN and variable
dimensionality for GRNN still partially limits their applicability to
give accurate prediction for mercury speciation. Compared with the
ANNs, the SVM is from statistical learning theory and has the rig-
orous mathematical fundamentals. It is a universal approximator
based on the principle of structural risk minimization (SRM) and
can be transformed into convex optimization problem. These algo-
rithmic characteristics ensure that the SVM can provide the strong
generalization capability and guarantee the global optimality in the
solution space. At the same time, Compared to the MNR, RBFNN and
GRNN, the SVM need to spend much simulation time (at 139.43 s) in
two-dimensional grid search and 10-fold cross-validation to obtain
two optimal algorithm parameters, � and �2. However, its compu-
tational time is still relatively shorter than that of the BPNN.

4.3. Effect of coal characteristics and operating condition

In practice, it is more concerned to reveal how the mercury emis-
sions in different forms are related to coal property and combustion
conditions. Due to strong robustness and generalization perfor-
mance, it is feasible that the SVM model can be used to determine
this relationship. For this purpose, the correlations of individual
input variable (heat value, total mercury, chlorine, sulfur and ash
as well as flue gas temperature) with output variable (elemental Hg,
oxidized Hg and particulate Hg) are given by the configured SVM
model in the different disturbance amplitude, as shown in Table 2
and Fig. 6. In this stage, the full dataset sample is trained and sim-
ulated in order to obtain the more comprehensive and accurate
results.

As can be seen from Table 2, it is observed that all correlation
coefficients are nonzero values which show the reasonable rela-
tionship exists between 6 selected input variables and 3 output
variables. Moreover, in the range of ±20%, it can also be observed
that the correlation coefficients for each input variable do not have
the significant variance, indicating that SVM model can provide
the sufficient stability and reliability and can be used for mercury
emission prediction and estimation.

According to Fig. 6, it is also found that in the given experi-
on mercury physicochemical form exhibits as complex mapping
relationship. The coal heat shows the negative correlation with
elemental mercury and the absolute value of mean correlation
coefficient is greater than that of both oxidized and particulate
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Table 2
Correlation coefficient between coal properties as well as operating condition and mercury speciation with different disturbance amplitude.

DA = −20% DA = −10% DA = 0% DA = 10% DA = 20%

EM OM PM EM OM PM EM OM PM EM OM PM EM OM PM

H −0.3247 0.1336 0.3007 −0.3190 0.1682 0.2824 −0.3141 0.1522 0.2777 −0.3110 0.0932 0.2870 −0.3081 0.0290 0.3075
M 0.5489 0.5663 0.0983 0.5271 0.5915 0.0884 0.5124 0.6132 0.0842 0.5041 0.6252 0.0871 0.4996 0.6309 0.0976
C −0.1572 0.2720 0.4647 −0.1831 0.2731 0.4780 −0.1904 0.2877 0.4754 −0.1776 0.3067 0.4523 −0.1517 0.3194 0.4164
S −0.1075 0.4834 0.1540 −0.1353 0.5873 0.1069 −0.1490 0.6249 0.0839 −0.1405 0.5802 0.0956 −0.1170 0.4938 0.1291
A −0.0347 0.2282 0.1503 −0.0864 0.1808 0.1557 −0.1233 0.1040 0.1651 −0.1435 0.0258 0.1812 −0.1491 −0.0254 0.2011

0.264
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T 0.4732 0.3122 −0.2738 0.5331 0.2949 −0.3238 0.5713

A = disturbance amplitude; EM = elemental mercury; OM = oxidized mercury; PM
= sulfur in coal; A = ash in coal; T = temperature of flue gas.

ercury, suggesting that the increasing coal heat value decreases
he elemental mercury emission whereas increase the oxidized and
articulate mercury emission. The positive correlation between
he coal mercury and both the elemental and oxidized mercury
s demonstrated, with the mean correlation coefficient of 0.5184
nd 0.6054, respectively. It is inferred that in the combustion envi-
onment, the mercury from coal is mostly transformed as gaseous
ercury in the form of Hg0, Hg+ (CH3Hg, HgCl, etc.) and Hg2+ (HgCl2,
gO, HgSO4, HgS and Hg(NO3)2, etc.), and appears to have not
irectly large contribution to particulate mercury (mean correla-
ion coefficient of 0.0911). The chlorine and sulfur from coal are
ound to be the two impact factors of gaseous mercury emissions.
hey present the similar effect on elemental mercury with the coef-
cient of −0.1720 and −0.1299 as well as on oxidized mercury
ith the coefficient of 0.2918 and 0.5539, respectively. Actually,

he effect is mainly attributed to the intermediate products, HCl and
O2, which generated from chlorine and sulfur in coal combustion
rocess [30], and help to promote the elemental mercury oxidation
eaction. In addition, the chlorine content of the coal is favorable to
ransformation from the gaseous to the particulate mercury [31].
s a result, the particulate mercury obtains quickly accumulation
nd has a high emission concentration with the mean correlation
oefficient of 0.4574. Compared with other explanatory variables,
he ash of coal displays low correlation for elemental and oxidized

ercury emission. Even so, the increasing coal ash still gives rise to
he decrease of the elemental mercury and the increase of particu-
ate mercury. On the one hand, the fly ash from coal ash in flue gas
an inhibit the mercury oxidization. On the other hand, the increas-
ng fly ash content not only enhances its adsorption capability to

aseous mercury, but also affects the equilibrium ratio between the
aseous and particulate mercury [32,33]. Based on the effect of flue
as temperature, it can be extrapolated that the elemental mer-
ury is difficult to proceed with the oxidized reaction in high flue

ig. 6. Mean correlation coefficient between coal properties as well as operating
ondition and mercury speciation.
4 −0.3467 0.5904 0.2309 −0.3437 0.5919 0.2099 −0.3190

culate mercury. H = heating value of coal; M = mercury in coal; C = chloride in coal;

gas temperature which leads to the increase of elemental mercury.
Simultaneously, due to negative influence of the temperature on
the adsorption equilibrium, high flue gas temperature reduce the
adsorption capability of the fly ash particles to gaseous mercury
which results in the rapid reduction for the particulate mercury,
with the mean correlation coefficient of −0.3214.

Finally, it is also necessary to note that, for the SVM model
used to predict the mercury speciation, the correlation coefficient
between the input and output variable in Table 2 is only valid for
a single input variable changed while keep other input variables
unchanged as well as all input variables must be independent. Actu-
ally, the input variables for the SVM model may not be absolutely
or completely independent in this case, e.g., in the combustion
process, heat value of coal sometimes directly affects the flue gas
temperature and is indirectly related with the release characteris-
tics of Hg, Cl, S and ash in coal. In order to overcome this situation,
the selection of the input variables needs to be more representa-
tive and independent. Although the SVM algorithm may not be
limited by the independence of input variable, a high degree of
independence of input variable can significantly enhance the gen-
eralization capability and prediction accuracy of the model, and,
may sometimes be effective to reduce the dimension of sample
space.

5. Conclusions

Support vector machine (SVM) is demonstrated as a powerful
and alternative approach to model mercury speciation in the flue
gases from coal combustion. By using SVM it is helpful to estimate
emission characteristics of mercury speciation and develop control
technologies for mercury pollution.

Although the SVM need to spend much CPU time for imple-
mentation than that of MNR and other ANN models except for the
BPNN model, it still has at least 69% reduction in prediction error
for the testing sample in this case, indicating that SVM is able to
successfully correlate the mercury speciation with coal properties
and operating temperature, and provide the superior performance
on the precision and stability of mercury speciation prediction with
the high generalization and robustness capability. Further, it is still
necessary to develop the high-performance artificial intelligence
models and advanced optimal search algorithm in order to make
more accurate and high efficient prediction for mercury speciation.

Although SVM model can be used to analyze the correlativity
between coal properties (heating value, total mercury, chloride,
sulfur and ash) as well as operating condition (flue gas temperature)
and mercury speciation with different chemical form (elemental,
oxidized and particulate mercury), it does not take into account

the effects of the combustion conditions (e.g., excess air, nitrogen
oxide and fly ash characteristic), the combustion mode and the air
pollution control devices (e.g., particulate collector, FGD leading to
mercury re-emission and SCR enhancing mercury oxidation). Obvi-
ously, it might be anticipated that the prediction performance of
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